Privacy-Preserving Graph Algorithms in the Semi-honest Model

نویسندگان

  • Justin Brickell
  • Vitaly Shmatikov
چکیده

We consider scenarios in which two parties, each in possession of a graph, wish to compute some algorithm on their joint graph in a privacy-preserving manner, that is, without leaking any information about their inputs except that revealed by the algorithm’s output. Working in the standard secure multi-party computation paradigm, we present new algorithms for privacy-preserving computation of APSD (all pairs shortest distance) and SSSD (single source shortest distance), as well as two new algorithms for privacy-preserving set union. Our algorithms are significantly more efficient than generic constructions. As in previous work on privacy-preserving data mining, we prove that our algorithms are secure provided the participants are “honest, but curious.”

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy-Preserving Data Mining in Malicious Model

Most of the previous cryptographic work in privacy-preserving data mining suggest solutions in the semi-honest model. Semi-honest model assumes that participating parties follows the prescribed protocol but try to infer private information using the messages they receive during the protocol. Although semi-honest model is realistic in many settings, there are cases where it may be better to use ...

متن کامل

Privacy-preserving data mining in the malicious model

Most of the cryptographic work in privacy-preserving distributed data mining deals with semi-honest adversaries, which are assumed to follow the prescribed protocol but try to infer private information using the messages they receive during the protocol. Although the semi-honest model is reasonable in some cases, it is unrealistic to assume that adversaries will always follow the protocols exac...

متن کامل

An Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling

In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...

متن کامل

Privacy-Preserving Data Mining in Presence of Covert Adversaries

Disclosure of the original data sets is not acceptable due to privacy concerns in many distributed data mining settings. To address such concerns, privacy-preserving data mining has been an active research area in recent years. All the recent works on privacy-preserving data mining have considered either semi-honest or malicious adversarial models, whereby an adversary is assumed to follow or a...

متن کامل

Location Privacy Preserving without Exact Locations in Mobile Services

Privacy preservation has recently received considerable attention in location-based services. A large number of location cloaking algorithms have been proposed for protecting the location privacy of mobile users. However, most of existing cloaking approaches assume that mobile users are trusted. And exact locations are required to protect location privacy, which are just the information mobile ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005